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Abstract: Embedded devices are increasingly connected to the Internet to provide new and innovative applications in
many domains. However, these devices can also contain security vulnerabilities, which allow attackers to
compromise them using malware. In this paper, we advocate the approach of similarity-based malware de-
tection for embedded IoT devices, and we present SIMBIoTA-ML, a light-weight, similarity-based antivirus
solution that takes advantage of machine learning techniques. We show that SIMBIoTA-ML can respect the re-
source constraints of embedded IoT devices, and it has a true positive malware detection rate of ca. 95%, while
having a low false positive detection rate at the same time. In addition, the detection process of SIMBIoTA-
ML has a near-constant running time, which allows IoT developers to better estimate the delay introduced by
scanning a file for malware. This property is advantageous in real-time applications, notably in the domain
of cyber-physical systems. We also study the robustness of SIMBIoTA-ML against two adversarial malware
creation strategies aiming at the evasion of similarity-based detection and we show that it is robust to one of
the strategies while, unfortunately, it can be completely evaded by the other.

1 INTRODUCTION

Embedded devices are special-purpose devices de-
signed to carry out a well-defined set of tasks. Nowa-
days, these devices are increasingly developed with
networking capabilities and are often connected to the
Internet. This technological advancement led to what
is now known as the Internet of Things (or IoT for
short), and embedded devices with networking capa-
bilities are also called embedded IoT devices.

The Internet of Things has enabled a wide range
of new and innovative applications in many modern-
day application domains, including healthcare, trans-
portation and agriculture. Unfortunately, embedded
IoT devices can have security weaknesses (just like
other types of computers). Such weaknesses include
insecure open ports, default or hard-coded passwords,
and software vulnerabilities. Open ports and weak
passwords allow attackers to easily gain access to the
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device, while software vulnerabilities, notably those
in the operating system of the device, allow for a
wide range of malicious activities. Moreover, IoT
devices in certain application domains are desirable
targets for attacks, because they handle sensitive per-
sonal and business-related data, or control critical
processes. Another reason for attackers to compro-
mise IoT devices is to build a large-scale attack infras-
tructure and leverage the combined computing power
of millions of such compromised devices. Conse-
quently, there has been a rise in the number of mal-
ware targeting embedded IoT devices. One of the
most infamous examples is Mirai (Antonakakis et al.,
2017), which infected hundreds of thousands of IoT
devices and launched one of the largest distributed de-
nial of service attacks against Internet-based services
in 2016. But the IoT threat landscape includes other
malware families as well, such as Gafgyt, Tsunami,
and Dnsamp (Cozzi et al., 2020).

Detection of malware on embedded IoT devices
is a challenging problem. In (Tamás et al., 2021),
we proposed SIMBIoTA (SIMilarity Based IoT An-
tivirus), an effective and efficient antivirus solution
for such devices. The operating principles of SIM-



BIoTA are similar to those of traditional signature-
based antivirus solutions, but SIMBIoTA uses TLSH
hash values of known malware instead of raw bi-
nary signatures for detection purposes. TLSH (Oliver
et al., 2013) is a similarity hash algorithm, which
means that small variations in the input do not alter
the TLSH output significantly. In other words, similar
inputs result in similar TLSH hash values, and SIM-
BIoTA takes advantage of this feature. More specif-
ically, in case of SIMBIoTA, embedded IoT devices
store only a few TLSH hash values of known mal-
ware, and they compare the TLSH hash values of new
files to these stored hashes. If the TLSH hash of a new
file is similar to that of a known malware, then the new
file is detected as malware. The main advantages of
SIMBIoTA are its light-weight requirements for stor-
age, computation, and bandwidth, as well as its re-
markable detection capabilities. Indeed, according to
the experiments reported in (Tamás et al., 2021), SIM-
BIoTA achieved a true positive detection rate of ca.
90%, even for previously unseen malware, and a false
positive detection rate of 0%.

In this paper, we also use TLSH hash values for
malware detection on IoT devices, but in a manner
different from that of SIMBIoTA. Our key observa-
tions are that TLSH hash values can serve as com-
pact representations of binary files and, thanks to their
well-defined structure, they can be used as feature
vectors for training machine learning models, which
can then be used for malware detection. We show
that this approach can result in interesting trade-offs
in terms of detection performance and resource usage
on embedded devices.

This paper is an extended version of (Papp et al.,
2022), which was presented at the 7th IoTBDS con-
ference1. Compared to the conference abstract, this
paper contains significant amount of new contribu-
tions on studying and comparing the robustness of
SIMBIoTA-ML and SIMBIoTA against adversarial
strategies aiming at creating malware samples that
evade similarity-based malware detection.

More specifically, our contributions in this paper
are summarized as follows:
• We introduce SIMBIoTA-ML, which replaces

SIMBIoTA’s database of TLSH hash values with
a random forest classifier trained on TLSH hashes
of malware and benign files.

• We measure the true and false positive detection
rates of SIMBIoTA-ML, as well as its storage re-
quirements and running time.

17th International Conference on Internet of Things, Big
Data and Security (IoTBDS), held online on April 22-24,
2022. More information: https://iotbds.scitevents.org/?y=
2022 (accessed: Aug 11, 2022)

• We compare SIMBIoTA-ML’s measurement re-
sults to those of SIMBIoTA and discuss the ad-
vantages and disadvantages of both solutions.
Specifically, we find that SIMBIoTA has lower
storage requirements and false positive detection
rate, but SIMBIoTA-ML outperforms SIMBIoTA
in terms of true positive detection rate even for
new, previously unseen malware samples. We
also show that SIMBIoTA’s database of TLSH
hash values increases over time, which has an im-
pact on its detection time. Specifically, the larger
the database is, the longer it takes for SIMBIoTA
to decide whether a new file is malicious or not.
By contrast, we show that SIMBIoTA-ML has a
near-constant running time, which allows for bet-
ter estimation of the delay introduced by the an-
tivirus solution, and this can be an advantage in
case of real-time applications in the domain of
cyber-physical systems.

• We study and compare the robustness of
SIMBIoTA-ML and SIMBIoTA against two ad-
versarial strategies for creating malware samples
that evade similarity-based malware detection.
Both strategies modify existing malware samples
by appending extra bytes to them such that those
bytes are never executed but they make the mod-
ified samples dissimilar to the original ones. The
first strategy adds a chunk of the original sample
to the malware and ensures that a certain target
difference is achieved by doing so. The second
strategy embeds a malware into a known benign
file and ensures that the resulting sample remains
similar to the benign file (and hence dissimilar to
the original malware sample). We show by mea-
surements that SIMBIoTA-ML is robust against
the first strategy, but it can be misled by the second
one, while SIMBIoTA has poor robustness against
both strategies.

The paper is structured as follows: Section 2 pro-
vides background information on machine learning-
based malware detection, its robustness against adver-
sarial evasion strategies, and the operation of SIM-
BIoTA. In Section 3, we introduce SIMBIoTA-ML
and discuss our changes to SIMBIoTA’s architecture
in order to use machine learning. The detection per-
formance and resource consumption of SIMBIoTA-
ML is evaluated and compared to that of SIMBIoTA
in Section 4. The evaluation and comparison of
the robustness of SIMBIoTA-ML and SIMBIoTA
against adversarial strategies aiming at creating mal-
ware samples that evade similarity-based malware de-
tection is presented in Section 5. Finally, Section 6
concludes the paper.

https://iotbds.scitevents.org/?y=2022
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2 RELATED WORK

In this section, we provide background information
on machine learning-based malware detection and its
robustness to adversarial evasion strategies, and we
summarize the operation of SIMBIoTA.

2.1 Malware detection with machine
learning

Traditionally, antivirus products rely on signatures
and heuristic rules that try to capture complex static
patterns in known malware samples. One problem
with this approach is that, like any method relying
on static features of binaries, it can be evaded by
packing, encryption, obfuscation, and code polymor-
phism. These techniques modify a malware sample’s
binary form in such a way that it cannot be detected by
the same signature or heuristic rule, while, at the same
time, its behavior remains the same. Another prob-
lem, which is more important for our present work,
is that creating signatures and heuristic rules requires
expert knowledge, and often necessitates reverse en-
gineering techniques. As a result, it is a time con-
suming and tedious task. Hence, signature-based and
heuristic approaches have a hard time keeping up with
the constantly evolving threat landscape2, and their
reliance on expert knowledge is a scalability bottle-
neck for antivirus companies.

In response, significant research effort has been
dedicated to automate malware detection using ma-
chine learning (Ye et al., 2017; Ucci et al., 2019; Gib-
ert et al., 2020). Machine learning requires features,
which are usually automatically extracted using static
and dynamic program analysis techniques (Soliman
et al., 2017). Features can be derived from a variety of
sources, including the samples’ instructions (Dovom
et al., 2019; Takase et al., 2020), control-flow (Alas-
mary et al., 2019), invoked API functions and sys-
tem calls (Abbas and Srikanthan, 2017; Shobana and
Poonkuzhali, 2020), and messages sent over the net-
work (Meidan et al., 2018; Goyal et al., 2019). Fea-
ture extraction can result in thousands of features,
some of which may be redundant and can be elimi-
nated with data mining techniques.

For efficient malware detection, machine
learning-based approaches require lots of benign and
malicious samples to train on. These samples are
often collected from so-called intelligence networks.
Nowadays, users’ machines run only a client-side
antivirus component, which may perform local

2https://www.sophos.com/en-us/medialibrary/pdfs/
technical-papers/sophoslabs-2019-threat-report.pdf (ac-
cessed: Feb 28, 2022)

detection, but it can also request a server’s assistance
during the detection process. This setup is also
known as cloud-based malware detection. The
client-side component sends suspicious samples to a
server in the cloud, which performs a more in-depth
analysis, e.g., by executing the sample in a sandbox,
makes a decision, and informs the client. At the same
time, the server collects these submitted samples,
which can then be used for training machine learning
models.

Cloud-based malware detection coupled with ma-
chine learning has also been proposed for embedded
IoT devices (Sun et al., 2017; Hussain et al., 2020).
This is an advantageous combination for embedded
IoT devices, because resource-heavy analysis is per-
formed in the cloud and the resource-constrained de-
vices need to run only a light-weight client-side com-
ponent. The client-side component either forwards all
files to the cloud for analysis or applies a pre-trained
machine learning model to detect malware. Proposed
machine learning models include light-weight con-
volutional neural networks (Su et al., 2018), recur-
rent neural networks (HaddadPajouh et al., 2018),
random forest classifiers (Takase et al., 2020), fuzzy
and fast fuzzy pattern trees (Dovom et al., 2019).
Many existing works use static features (Ngo et al.,
2020), including function call graphs (Nguyen et al.,
2020), grey scale images of binaries (Karanja et al.,
2020), strings (Hwang et al., 2020), and instruction
opcodes (Nakhodchi et al., 2020).

2.2 Evasion of ML-based malware
detection

Adversarial evasion strategies against machine
learning-based classifiers were initially created in
the image recognition domain, but soon later, they
were also adopted in the field of ML-based malware
detection. A comprehensive survey on the topic
can be found in (Aryal et al., 2022). Adversarial
examples, in this case, are malware samples crafted
in such a way that they evade ML-based malware
detection. They are typically created by perturbing
existing malware samples in such a way that their
original functionality is preserved, but the features on
which the ML-based detector works are sufficiently
changed to induce misclassification. Perturbation
of existing samples can mean modifying bytes in,
adding bytes to, or deleting bytes from the samples.
Two specific methods are called append and slack
attacks in (Suciu et al., 2019), where append attacks
add bytes to the end of an existing malware binary,
whereas slack attacks add or modify bytes in the
slack regions of a binary, which are gaps between

https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophoslabs-2019-threat-report.pdf
https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophoslabs-2019-threat-report.pdf


neighboring sections of an executable file. In this
paper, we will consider only append attacks because
of their simplicity.

Depending on the knowledge available to the at-
tacker, we can distinguish between, so called, white-
box and black-box attacker models (Aryal et al.,
2022). In the white-box model, the attacker has full
knowledge about the ML model which he wants to
create adversarial examples for, including even its
training data and tuned hyper-parameters. In the
black-box model, on the other hand, the attacker only
has access to the input and the output of the model,
and he has no information about the model and its
training data and parameters. In practice, the attacker
may also have partial knowledge about the system
under attack, which is sometimes called a grey-box
model. In this paper, we follow a black-box ap-
proach: apart from knowing the general concepts of
our similarity-based malware detectors, the attacker
is assumed to have no information on any particular
details, parameters, or training data.

As for generating bytes to be added to a malware
binary in order to create an adversarial example, there
have been many strategies proposed (see Section 7 of
(Aryal et al., 2022)). In gradient-based approaches
(Anderson et al., 2017; Kolosnjaji et al., 2018; Kreuk
et al., 2019; Suciu et al., 2019), the gradient of the
change of the output or some internal parameter of
the model is used to determine the required change on
the input that pushes the sample towards the benign
class the most. Program obfuscation techniques have
also been considered (Park et al., 2019; Song et al.,
2021), as they can modify binaries without chang-
ing their functionality. Reinforcement learning-based
approaches have been proposed in (Anderson et al.,
2017; Anderson et al., 2018), where an agent is pro-
vided with a set of functionality preserving operations
on binaries, and reinforcement learning is used to de-
rive, in an iterative manner, the sequence of required
operations on a given malware sample that transforms
it to a detection evading sample. Finally, Generative
Adversarial Networks (GAN) and Recurrent Neural
Networks (RNN) have also been used in this con-
text; the most prominent examples are (Hu and Tan,
2017b) and (Hu and Tan, 2017a), respectively.

2.3 SIMBIoTA

SIMBIoTA was proposed in (Tamás et al., 2021). It
is a light-weight antivirus solution with limited re-
quirements for storage, computation, and bandwidth,
hence suitable for embedded IoT devices. SIMBIoTA
relies on a large malware database maintained on a
backend server. This malware database is assumed

to be continuously updated with samples obtained
from an intelligence network as mentioned in Subsec-
tion 2.1. The server computes the TLSH hash values
of the samples in its database, and pushes a subset of
these TLSH hashes to the client-side antivirus com-
ponent on the embedded IoT devices, where a light-
weight algorithm uses them to detect malware based
on binary similarity. Therefore, SIMBIoTA requires
resource-constrained embedded IoT devices to store
only a small database with a few TLSH hash values.

In (Tamás et al., 2021), SIMBIoTA was evaluated
on a total of 47,937 malicious samples and a total of
14,119 benign samples for the ARM and MIPS archi-
tectures. In the experiments, the set of samples was
divided into two groups: the samples known to the
backend via the intelligence network, and the sam-
ples found only in the wild. The samples known to
the backend were used to construct the database of
TLSH hash values. Based on the metadata of mali-
cious samples available in VirusTotal3, the samples
were also put into so-called “weekly batches”, i.e.,
sets of samples that were first submitted to Virus-
Total on the same week. At the beginning of each
week, the database of TLSH hashes were updated and
the detection performance was measured in two ways.
First, we checked the true positive detection rate for
all samples in previous weeks’ weekly batches. Sec-
ond, we also submitted samples from the wild of the
next two weeks’ weekly batch to see SIMBIoTA’s de-
tection performance for new, previously unseen mal-
ware samples. The experiments measured a false pos-
itive detection rate of 0%, a true positive detection rate
above 90% for samples of previous weeks’ weekly
batches, and a true positive detection rate of ca. 90%
for the next two weeks’ weekly batches. Throughout
the experiments, fewer than 200 bytes were necessary
to update the TLSH hashes stored on the embedded
IoT device. By the end of the experiments, the storage
requirement on the embedded IoT device was 10 kB
in the case of ARM and 6.5 kB in the MIPS case.

Despite its remarkable features, SIMBIoTA has
a number of limitations as well. First, similar to
other malware detection solutions relying on static
features, analyzing obfuscated or encrypted samples
is challenging for SIMBIoTA. Second, as we show in
this paper, the bigger the database of similarity hash
values, the longer it takes for SIMBIoTA to decide
whether a given file is malicious or not. This can be
a challenge in IoT environments where embedded de-
vices must comply with real-time requirements, be-
cause the run time delay introduced by SIMBIoTA is
hard to design for. Last, even though a true positive
detection rate of 90% on average for new, previously

3https://www.virustotal.com/ (accessed: Jan 8, 2022)
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unseen malware samples is surprisingly good, exist-
ing literature suggests that machine learning-based
malware detection approaches can achieve even better
results.

In this paper, we modify SIMBIoTA’s architecture
to enable embedded IoT devices to take advantage of
machine learning-based malware detection. Specif-
ically, we replace the database of TLSH hash val-
ues with a random forest classifier trained on TLSH
hashes of known malware and benign files. We show
that this modification can increase the true positive
detection rate by 5% on average, even for new, previ-
ously unseen malware samples. We also show that our
trained random forest classifier has a near-constant
run time, which allows IoT system developers to bet-
ter estimate and design for the delay introduced by the
antivirus solution.

3 ARCHITECTURE AND DESIGN
OF SIMBIOTA-ML

We now discuss our proposed solution to improve
SIMBIoTA with machine learning. We discuss our
modifications to SIMBIoTA’s architecture in Subsec-
tion 3.1 and our design choices for machine learning
in Subsection 3.2. We call the resulting ML-based an-
tivirus solution SIMBIoTA-ML.

3.1 Architectural overview

The original architecture of SIMBIoTA consists of
both client-side and server-side components. Client-
side components are located on embedded IoT de-
vices and are responsible for protecting devices from
malware via a detection process. The detection pro-
cess takes as input the unknown file to be checked and
a database containing TLSH hash values of known
malware samples. The unknown file’s TLSH hash
value is then compared to the TLSH hash values in
the database in a pairwise manner. If the unknown
file is determined to be similar to a known malware
sample, it is considered malicious.

The task of server-side components is to keep the
database of TLSH hash values up-to-date. These
components are located on a backend server. The
backend maintains a malware database, which re-
ceives malicious samples from honeypots, malware
feeds, and malware analysis sandboxes via the intel-
ligence network. Samples in the malware database
are represented in a graph, where nodes are the TLSH
hash values of the samples, and an edge connects two
nodes if the corresponding TLSH hashes are simi-
lar enough according to some similarity metric. The

backend then computes a dominating set over this
graph and the TLSH hash values of the nodes in the
dominating set are sent to the client-side as an update.

Our main improvement to SIMBIoTA is to replace
the dominating set construction with machine learn-
ing. The modified architecture is shown in Figure 1.
On embedded IoT devices, we replace the database
of TLSH hash values with a machine learning model.
Therefore, the modified detection process takes as in-
put the unknown file to be checked and the machine
learning model. The modified detection process ap-
plies the machine learning model to the unknown file
to decide whether the file is malicious or not. The ma-
chine learning model is trained on the backend using
both malicious and benign samples. Therefore, we
keep SIMBIoTA’s intelligence network and require it
to supply the backend with benign samples as well.
Benign samples could be received from IoT vendors
or from public software databases.

3.2 Design choices for machine learning

Machine learning models for malware detection must
be trained using features that represent important
qualities of executable files. In general, features can
be derived using static or dynamic program analy-
sis. Dynamic program analysis, i.e., monitoring a
program’s execution, however, leads to degraded per-
formance, which is a challenge in the IoT setting.
Therefore, we need features whose extraction is light-
weight and can be done statically.

TLSH (Oliver et al., 2013) hash values can be
considered static features because their calculation in-
volves only the processing of the raw bytes in the pro-
gram file. Moreover, TLSH has a light-weight calcu-
lation time in the range of milliseconds, which makes
it suitable in the context of malware detection on IoT
devices. More specifically, computing a TLSH hash
value involves the following steps:

1. Process the raw byte string using a sliding window
of size 5 to populate an array of bucket counts.

2. Calculate quartile points q1, q2, and q3 based on
the buckets’ values.

3. Construct the hash value’s header based on the
quartile points.

4. Construct the hash value’s body.

The first three bytes of the resulting TLSH hash value
is a header with following parts4:

• the first byte is a checksum value;

4The TLSH implementation at https://github.com/
trendmicro/tlsh (accessed: Jan 9, 2022) appends two extra
bytes to the beginning of the header for versioning purposes.

https://github.com/trendmicro/tlsh
https://github.com/trendmicro/tlsh


Figure 1: Architecture of SIMBIoTA-ML

• the second byte stores the so-called L value, which
is calculated from the length of the original byte
sequence;

• the two nibbles of the third byte are called the Q1
and Q2 ratios, and they are computed from the
quartile points q1 and q3, and the quartile points
q2 and q3, respectively.

The rest of the bytes are the binary representations of
the 128 buckets that TLSH uses during the construc-
tion of the hash value quantized to two bits.

As an illustration, let us consider the following
prefix of a TLSH hash value, represented in hexadec-
imal format:

82 A4 02 13 79 E2 86 B1 E7 65 18 ...

The first byte of the header is a checksum, which has
the value of hexadecimal 82 in our example. This is
followed by the L value, which is hexadecimal A4 in
this case. Next come the Q1 and Q2 ratios, which
are hexadecimal 0 and 2, respectively, in the exam-
ple. The remaining bytes are the binary representa-
tions of the buckets turned into hexadecimal numbers.
As each bucket value is represented by two bits, the
next hexadecimal number 1, in the example, encodes
the 2-bit values 00 and 01 of the first two buckets.
Similarly, the next hexadecimal number 3 encodes the
2-bit values 00 and 11 of the next two buckets, etc.

We transform the TLSH hash value into 131 fea-
tures by splitting the hash value into smaller parts.
Specifically, we take from the header the L value, the
Q1 ratio, and the Q2 ratio. We then split the bytes
representing buckets into bit pairs, which gives us 128
2-bit features for the 128 buckets. We train a random
forest classifier over these extracted features. Choos-
ing a random forest classifier is advantageous because
it automatically filters non-predictive features.

4 PERFORMANCE EVALUATION

In this section, we compare the performance of
SIMBIoTA-ML to that of SIMBIoTA and discuss
their advantages and disadvantages. Specifically, we
discuss the experiment design and the used data set
in Subsection 4.1. Subsections 4.2 and 4.3 present
the true positive and false positive detection rates, re-
spectively. We compare the two solutions’ storage re-
quirements in Subsection 4.4 and their running times
in Subsection 4.5.

4.1 Experiment design

We perform all experiments using the same data set
as used for the evaluation of SIMBIoTA. This dataset
is called CrySyS-Ukatemi benchmark dataset of IoT
malware 2021 (or CUBE-MALIoT-2021 for short).
The dataset consists of 29,209 malicious ARM sam-
ples and 18,715 malicious MIPS samples, which we
extended with 4,727 benign ARM samples and 9,392
benign MIPS samples for the purpose of our study.
For malicious samples, metadata is also available,
which details, among others, the date the sample was
first seen in the wild (i.e., submitted to VirusTotal).
We made CUBE-MALIoT-2021 publicly available5

for use by the IoT malware research community. To
the best of our knowledge, such a large dataset con-
taining raw binaries of IoT malware was not previ-
ously available publicly, and we hope that CUBE-
MALIoT-2021 will become a de facto benchmark
dataset in IoT malware detection, in order to satisfy
the need for the comparability and reproducibility of
results of different research groups.

5https://github.com/CrySyS/cube-maliot-2021 (ac-
cessed: Jan 9, 2022)

https://github.com/CrySyS/cube-maliot-2021


We also follow the same experiment design as
used in (Tamás et al., 2021) for SIMBIoTA. The time-
line of the experiment is between January 1st, 2018
and September 15th, 2019, divided into weeks. We
assume that both SIMBIoTA and SIMBIoTA-ML re-
ceive updates for their detection methods at the be-
ginning of each week. Malicious samples are orga-
nized into weekly batches based on the date they were
first seen, and each weekly batch is further divided
into two groups. The first group, which contains 10%
of that weekly batch’s samples and is called the in-
telligence part, is made available to the backend for
processing. These samples represent the knowledge
obtained by the antivirus company from the intelli-
gence network. The second group, called the wilder-
ness part, contains 90% of that weekly batch’s sam-
ples, and it is assumed to exist only in the wild and is
never revealed to the backend. The wilderness parts
of weekly batches are used to evaluate the antivirus
solutions’ true positive detection rate.

SIMBIoTA-ML also requires benign samples in
order to train the machine learning model on a bal-
anced data set. However, we have no metadata avail-
able for benign samples. Therefore, we randomly as-
sign benign samples to be part of either the training
or test sets for each architecture. In the case of ARM,
the training set contains 2,921 benign ARM samples,
and for MIPS, the corresponding training set contains
1,872 MIPS samples. Each week, we randomly select
the same number of benign samples from the training
sets as the number of malicious samples in the intelli-
gence part of that weekly batch. Selected benign sam-
ples are sent to SIMBIoTA-ML’s backend for training
the machine learning model. Samples in the test sets
are never revealed to the backend and are used to mea-
sure false positive detection rates.

Note that our experiment design results in
SIMBIoTA-ML’s backend having less training data
available than what is usually the case in machine
learning. Researchers often use 80% of their data
sets for training purposes and use the remaining 20%
as the testing set. In our case, however, the backend
can only train on 10% of the malicious samples such
that we can compare its performance to that of SIM-
BIoTA. For SIMBIoTA-ML’s backend to have a bal-
anced data set, it has access to 61.78% of the benign
ARM samples and 19.93% of the benign MIPS sam-
ples.

The random forest classifier trained on the back-
end for SIMBIoTA-ML also needs to be configured.
Specifically, the number of decision trees that make
up the random forest has to be specified. This number
represents a trade-off between the detection capabil-
ity of the machine learning model and the memory

required to apply the model on the embedded IoT de-
vice. The more decision trees there are in the model,
the better the detection capability is. However, hav-
ing more decision trees also increases the model size,
increasing the amount of memory the embedded IoT
device must have in order to apply the model. We
set the number of decision trees to 10, which gave us
a good trade-off between the two conflicting require-
ments.

Our method of assigning benign samples to the
training and test sets introduces randomness into the
experiment. To balance this randomness, we repeat
the experiment 12 times and use traditional box plots
to present the results. The data points of our box plots
show the results of the 12 runs of our experiment for
each week.

4.2 True positive detection rate

We measured the true positive detection rate of SIM-
BIoTA and SIMBIoTA-ML with the wilderness parts
of weekly batches. In order to measure the perfor-
mance for existing malware, we submit the wilderness
parts of all previous weekly batches to the embedded
IoT device for detection. We also measure the perfor-
mance of new, previously unseen malware by submit-
ting the wilderness part of the current weekly batch to
the detection process. Note that we assume embed-
ded IoT devices to receive updates to their detection
processes at the beginning of each week. Therefore,
the wilderness part of the current weekly batch con-
tains samples that can be considered coming from the
future.

The measured true positive detection rate for
samples of the wilderness parts of previous weekly
batches is shown in Figure 2. The left-hand side
of the Figure shows the performance of SIMBIoTA
and the right-hand side shows the performance of
SIMBIoTA-ML. Both antivirus solutions show a
learning curve for both the MIPS and the ARM ar-
chitectures, i.e., their true positive detection rate im-
proves as time passes and more samples are made
available to the backend. However, SIMBIoTA-ML
consistently outperforms SIMBIoTA by having a true
positive detection rate above 95% throughout the
measurement.

Figure 3 shows the true positive detection rate for
the wilderness parts of current weeks for both SIM-
BIoTA and SIMBIoTA-ML. The left-hand side de-
picts the performance of SIMBIoTA and the right-
hand side shows the performance of SIMBIoTA-ML.
SIMBIoTA’s performance varies in time and it is only
by the second half of the experiment that its perfor-
mance reaches 90-95%. SIMBIoTA-ML also shows



Figure 2: Box plot of the true positive detection rate for samples of the past for SIMBIoTA and SIMBIoTA-ML

variations in its true positive detection rate but the
variation is smaller than that of SIMBIoTA, and per-
formance stays above and around 95% for the major-
ity of the experiment. Therefore, we conclude that
SIMBIoTA-ML outperforms SIMBIoTA in this re-
gard as well.

4.3 False positive detection rate

In order to measure the false positive detection rate
of SIMBIoTA and SIMBIoTA-ML, we conduct the
following experiment. In the case of SIMBIoTA, the
backend does not need benign samples due to the an-
tivirus solution’s design. Therefore, we submit all be-
nign samples to SIMBIoTA for detection. In the case
of SIMBIoTA-ML, however, the backend requires be-
nign samples in order to train the machine learning
model on a balanced dataset. As a result, SIMBIoTA-
ML’s backend has access to the benign samples in the
training set. Therefore, we only submit benign sam-
ples from the test set to SIMBIoTA-ML’s detection
process.

In our experiments, SIMBIoTA did not detect any
benign samples as malicious, hence achieved a false
positive rate of 0, which is consistent with the results

reported in (Tamás et al., 2021). The same cannot be
said for SIMBIoTA-ML, however. Machine learning
classifiers have the tendency to sometimes misclassify
inputs and our random forest classifier is no excep-
tion. The weekly false positive detection rate on be-
nign samples is shown in Figure 4. In the case of be-
nign ARM samples, SIMBIoTA-ML’s false positive
detection rate stays below 1% on average through-
out the experiment. For benign MIPS samples, the
false positive detection rate goes slightly above 1%
on average at the beginning of the experiment. It then
steadily decreases as more and more benign MIPS
samples are revealed to the backend. As we dis-
cussed in Subsection 4.1, our experiment design pro-
vides less training data to the backend than what is
usually recommended in literature. This is especially
the case for benign MIPS samples, because the data
set is divided into 19.93%-80.07% for training and
testing, respectively. Taking this into consideration,
we conclude that while SIMBIoTA-ML’s false posi-
tive detection rate is higher than that of SIMBIoTA, it
is still acceptable for malware detection.



Figure 3: Box plot of the true positive detection rate for previously unseen samples for SIMBIoTA and SIMBIoTA-ML

Figure 4: Box plot of the false positive detection rate for benign samples in the test set for SIMBIoTA-ML



4.4 Storage requirement

Throughout our experiments, we measured the
amount of storage necessary to hold SIMBIoTA’s
database of similarity hashes and SIMBIoTA-ML’s
machine learning model. In the case of SIMBIoTA,
each similarity hash is 35 bytes, therefore, the total
amount of storage necessary is 35 times the number
of entries in the database. In the case of SIMBIoTA-
ML, our implementation for the random forest classi-
fier uses the scikit-learn6 Python module. In order to
measure the amount of storage necessary to hold the
model, we used the pickle7 module to transform the
Python object into a byte string that could be written
to disk and later reloaded into memory. We then cal-
culated the length of the byte string to get the number
of bytes necessary to represent the object.

The storage requirements for both SIMBIoTA and
SIMBIoTA-ML are shown in Figure 5. While the
storage requirements of both antivirus solutions in-
crease over time, SIMBIoTA-ML’s requirements are
orders of magnitude higher, going form ca. 40 KB to
ca. 150 KB by the end of our experiment. By contrast,
SIMBIoTA’s database of similarity hashes require less
than 10 KB of storage throughout the experiment.
Therefore, we may conclude that SIMBIoTA-ML is
not fit for very low-end embedded devices, which typ-
ically have only tens of kilobytes of RAM and a few
hundred kilobytes of Flash memory (Ojo et al., 2018).
However, such devices usually do not have an oper-
ating system and they do not handle files, therefore,
they are not really in the scope of our work. On the
other hand, middle-range and high-end embedded de-
vices with megabytes of memory available would be
able to use SIMBIoTA-ML.

4.5 Run time performance

The last aspect by which we compare SIMBIoTA
and SIMBIoTA-ML is their run time performance.
Specifically, we measure the time it takes for both so-
lutions’ detection process to decide whether a submit-
ted file is malicious or not. We performed this mea-
surement on a non-real time Linux operating system,
therefore, small fluctuations in the measurements are
possible due to task scheduling in the system.

The run time performance of SIMBIoTA and
SIMBIoTA-ML for determining that a submitted file
is malicious is shown in Figure 6. SIMBIoTA’s per-
formance microseconds as it only needs to calculate
the difference between TLSH hashes and compare the

6https://scikit-learn.org/stable/ (accessed: Jan 11, 2022)
7https://docs.python.org/3/library/pickle.html (ac-

cessed: Jan 11, 2022)

result to a threshold value. However, SIMBIoTA has
to do the comparison in a pair-wise fashion, i.e., it has
to compare the TLSH hash value of the unknown file
to each similarity hash value in its database individ-
ually. It is therefore not surprising that as the size of
the database increases, so does the run time of the de-
tection process. This is also the explanation for the
growing difference between the minimum and maxi-
mum run time we measured. Depending on where the
similar hash value is located in the database of simi-
larity hashes, SIMBIoTA’s detection process needs to
perform a different number of comparisons before a
decision can be made. Unfortunately, in application
areas where the delay caused by an antivirus product
is of importance, e.g., due to real time requirements,
this is an undesirable feature.

SIMBIoTA-ML requires more time to apply the
machine learning model: its run time performance is
a little above 1 ms. While this would result in a larger
delay in real systems than that caused by SIMBIoTA,
this delay is near constant. This is advantageous from
the system operator’s standpoint because this delay is
easy to take into consideration during system design
and operation.

The run time performance of SIMBIoTA and
SIMBIoTA-ML for determining that a submitted file
is benign is shown in Figure 7. The run time delay that
SIMBIoTA’s detection process would cause on a real
system is even higher in this case. The reason for this
is that in order for SIMBIoTA’s detection process to
make a decision about an unknown benign file, it has
to compare the file’s TLSH hash value to all the sim-
ilarity hash values in its database. SIMBIoTA-ML’s
detection process, however, always applies the same
machine learning model to every file, therefore, the
run time performance is the same for both malware
and benign files.

5 ROBUSTNESS AGAINST
EVASION OF DETECTION

Once similarity-based malware detection becomes
wide-spread in practice, attackers will naturally try to
construct malware samples that evade this type of de-
tection too. This means that they would try to create
malware samples that are misclassified by similarity-
based malware detectors as benign files. In the field
of machine learning, carefully crafted inputs that are
misclassified by a previously trained ML model are
called adversarial examples (Barreno et al., 2010).
Clearly, the same concept can be extended to other
types of (i.e., non-ML-based) classifiers too. Hence, it
seems interesting to investigate both SIMBIoTA-ML

https://scikit-learn.org/stable/
https://docs.python.org/3/library/pickle.html


Figure 5: Box plot of the storage requirements for SIMBIoTA and SIMBIoTA-ML

and SIMBIoTA in terms of their robustness with re-
spect to such adversarial examples.

In order to do so, in this section, we first in-
troduce two strategies for creating adversarial exam-
ples for SIMBIoTA and SIMBIoTA-ML in Subsec-
tion 5.1 and evaluate the detection rate of SIMBIoTA
and SIMBIoTA-ML on samples generated by these
strategies in Subsection 5.2.

5.1 Strategies for creating adversarial
examples

Adversarial examples for malware detection can be
created in multiple ways. One approach could be to
construct new malware with completely novel func-
tionality. However, we do not consider this approach
here, because constructing new malware is difficult,
and hence, this is not the most economical way for
attackers to create adversarial examples. In addi-
tion, the detection performance of SIMBIoTA and
SIMBIoTA-ML on new malware has already been
measured in Section 4, where we plotted their true
positive detection rate for previously unseen samples
in Figure 3.

Instead, we are interested in the approach of creat-

ing adversarial examples by modifying existing mal-
ware samples, as this seems to be a more economi-
cally viable strategy for attackers. Obfuscating exist-
ing malware samples should be mentioned here as an
example for this approach, but we do not consider this
either, because from the perspective of SIMBIoTA
and SIMBIoTA-ML, obfuscated samples appear to be
new malware, as their binary representations can be
completely different from those of the original sam-
ples from which they were created. In other words,
obfuscated samples are considered new malware by
SIMBIoTA and SIMBIoTA-ML, and their detection
performance on them has already been measured, as
we explained above.

In other domains (notably in case of image recog-
nition), adversarial examples are often constructed in
the feature space, which means crafting feature vec-
tors (instead of real inputs) that are misclassified by
the ML model under study. However, this approach
has problems in the domain of malware detection, be-
cause the attacker would ultimately need to find or
to construct functional computer programs that have
the crafted feature vectors that are misclassified by the
ML model, and this seems to be difficult. In addition,
in the case of non-ML-based malware detection, the



Figure 6: Box plot of the run time of the detection process for “malicious” decision for SIMBIoTA and SIMBIoTA-ML

concepts of the feature vector and feature space may
not be well-defined. Therefore, we are interested in
attacks aiming at crafting real inputs, rather than fea-
ture vectors as adversarial examples.

Even with all these constraints, there are still many
ways to construct adversarial examples for malware
detection by modifying malware binaries along differ-
ent strategies. Therefore, we further restrict ourselves
to adversarial modification strategies that result in an
executable program with the same functionality as the
original malware and that minimize the effort of the
attacker.

More specifically, we consider here two strate-
gies that can easily satisfy the above requirements
of preserving functionality and requiring minimal ef-
fort. Both strategies concatenate extra bytes to the
end of the malware binary in such a way that those
extra bytes never get executed but they will be consid-
ered in the computation of the TLSH value by SIM-
BIoTA and SIMBIoTA-ML. In case of the first strat-
egy, called Chunker, the extra bytes added are ob-
tained as a chunk of the malware binary itself. In
case of the second strategy, called Disguiser, an entire
known benign binary is concatenated to the malware.
One can think of strategy Chunker as a method that

tries to add a small amount of extra bytes to the mal-
ware binary such that the modified sample becomes
sufficiently different from the original malware. Strat-
egy Disguiser, on the other hand, can be viewed as
a method to hide the malware within a potentially
much larger benign file, hoping that the resulting sam-
ple remains sufficiently similar to the benign file (and
hence, dissimilar to the original malware).

5.1.1 Chunker

Recall that both SIMBIoTA and SIMBIoTA-ML op-
erates on the TLSH values of the inputs; SIMBIoTA
uses the TLSH values directly, while SIMBIoTA-
ML uses them as feature vectors for a random for-
est model. Hence, intuitively, the goal of adding extra
bytes to a malware sample should be to obtain a modi-
fied sample whose TLSH value differs from that of the
original sample to the extent that the modified sample
is misclassified as a benign file by both algorithms.

In addition, as explained and justified in (Buttyán
et al., 2022), SIMBIoTA uses the value 40 as the
TLSH difference threshold: if the TLSH difference
between a new file and any known malware sample
is smaller than 40, then the new file is classified as
malware, otherwise it is classified as benign.



Figure 7: Box plot of the run time of the detection process for “benign” decision for SIMBIoTA and SIMBIoTA-ML

So a natural idea for adversarial example creation
is to add extra bytes to a malware sample in such a
way that the TLSH difference between the modified
sample and the original one becomes 40 or larger. We
expect that an adversarial sample created in this way
would very likely mislead the SIMBIoTA classifier;
however, it is less clear how SIMBIoTA-ML would
cope with such an adversarial sample, as it does not
make decisions directly on the TLSH difference be-
tween the new sample and previously seen malware.
Our measurements, presented in Subsection 5.2 will
help to answer this question.

Another question to consider is how to generate
the extra bytes that are added to the malware sample
to be modified. A practical requirement here could be
to preserve the byte statistics of the original sample.
In particular, constant or random bytes would be eas-
ily spotted by simple static analysis. In addition, even
if the extra bytes are generated by a byte-entropy pre-
serving manner, if the added content does not look
like some meaningful program code, then the mod-
ified sample may appear suspicious to a static ana-
lyzer. Hence, we propose to take a chunk of the origi-
nal sample itself and use it as the extra bytes concate-
nated to obtain the modified sample.

In order to determine how many extra bytes will
likely be sufficient to drive the TLSH difference be-
tween the original sample and the modified one above
40, we did an experiment: We took a subset of
size 2,000 of the ARM samples from the CUBE-
MALIOT-2021 dataset (i.e., the dataset we also used
for performance evaluation in Section 4). Then, we
split each sample into 20 equal chunks (i.e., each
chunk having the size of 5% of the sample size), and
we chose the chunk whose byte entropy is the clos-
est to the byte entropy of the original sample. Finally,
we concatenated this chunk to the sample 1, 2, . . . ,
8 times (i.e., we increased the sample size with 5%,
10%, . . . , 40%, respectively). For each case, we mea-
sured the TLSH difference between the original sam-
ple and the modified one. The obtained box plot of the
results is shown in Figure 8. We note that a similar
box plot was obtained for 2,000 MIPS samples ran-
domly chosen from the CUBE-MALIOT-2021 dataset
too, but we do not show that for saving space.

As expected, the more extra bytes we add in the
described way to a sample, the larger the TLSH dif-
ference becomes between the original and the modi-
fied samples. More importantly, based on Figure 8,
we can conclude that increasing the sample size with



Figure 8: TLSH difference between the original sample and
the adversarial example created from it by strategy Chunker
as a function of the amount of bytes added.

20% (by adding the chosen chunk 4 times) results in
a TLSH difference of 40 or above for the majority of
the samples. However, it may happen that increasing
the sample size with 20% is not sufficient, so the at-
tacker should check the actually achieved TLSH dif-
ference. In addition, if the attacker wants to achieve
a TLSH difference larger than 40, then he may need
to perform an even larger increase in sample size. For
instance, achieving a TLSH difference of 60 appears
to need a 25% or even 30% increase in the sample size
(i.e., concatenating the chosen chunk 5 or 6 times to
the original sample).

To summarize, strategy Chunker works as fol-
lows: The attacker takes a malware sample to be mod-
ified, and splits the sample into 20 equal sized chunks
such that each chunk has the size of 5% of the orig-
inal sample size. Then, he chooses the chunk whose
byte entropy is the most similar to the byte entropy
of the original sample. Finally, the attacker concate-
nates the chosen chunk to the original sample multi-
ple times, depending on the target TLSH difference
he wants to achieve. For instance, to achieve a TLSH
difference of at least 40 between the modified sam-
ple and the original one, the attacker concatenates the
chosen chunk 4 times (i.e., increases the sample size
with 20%). In any case, the attacker computes the re-
sulting TLSH difference between the original sample
and the modified one. If the target TLSH difference
is achieved, then the attacker is done. If the TLSH
difference is smaller than the target TLSH difference,
then the attacker must concatenate the chosen chunk
more times or re-start from another malware sample.

5.1.2 Disguiser

Strategy Chunker tries to modify malware samples
such that they become dissimilar to their originals. In
contrast to this, strategy Disguiser tries to embed mal-

Figure 9: Illustration of the effect of the size ratio between
the adversarial example and the hosting benign file on the
TLSH difference between them when strategy Disguiser is
used. The x-axis shows the ratio of the sizes and the y-axis
shows the TLSH difference.

ware into benign binaries in such a way that the result-
ing files remain similar to the hosting benign files. In
practice, the embedding is performed by concatenat-
ing the benign binary to the malware binary, hence
when executed, the malware will run and control is
never passed to the benign part.

One issue to consider in this case is the ratio of
the sizes of the malicious and the benign parts. Intu-
itively, if a small benign file is concatenated to a large
malware, then the malicious part may dominate, and
the TLSH value of the result will not be similar to the
TLSH value of the benign part. So the attacker may
want to embed small malware samples into large be-
nign binaries. However, this increases the size of the
adversarial samples that he ultimately needs to deliver
to victims. Hence, ideally, the attacker would like to
minimize the size of the benign file in which his mal-
ware is embedded, subject to the constraint that it is
still ensured that the TLSH value of the resulting ad-
versarial sample is similar to the TLSH value of the
hosting benign file.

To understand the effect of the ratio of the sizes
of the benign and malware parts on the TLSH dif-
ference between the adversarial example and its be-
nign part, we performed an experiment: We randomly
chose 100 malware samples and 300 benign files from
the dataset used in the performance evaluation in Sec-
tion 4, we paired these malware and benign binaries
in all possible ways, and we created the scatter plot
shown in Figure 9. Each point in this plot represents a
pair (M,B) of a malware M and a benign file B. Fur-
thermore, the x coordinate of a point is the ratio of the
sizes of M +B and B, where M +B denotes the mal-
ware M and the benign file B concatenated, and the y
coordinate is the TLSH difference between M+B and
B.



As in this case, the attacker is interested in a small
TLSH difference between M +B and B, the interest-
ing part of the figure is the bottom left corner of the
scatter plot. For this reason, we enlarged that part on
the right side of Figure 9. As it can be clearly seen,
when the ratio of the sizes of M+B and B is above 1.2,
the TLSH difference tends to get above the threshold
40. This means that we can only hope for keeping the
TLSH difference low (i.e. below 40, or even below
30) when the malware part remains smaller than 20%
of the benign part.

Given this observation, strategy Diguiser can be
summarized as follows: The attacker takes a malware
sample and chooses a known benign file such that the
ratio of the sizes of the malware and the benign file
is smaller than 20%. The malware and the benign
parts are concatenated, and the attacker computes the
TLSH difference between the resulting sample and
the hosting benign file. If this TLSH difference is
smaller than 40, then the attacker is done. Otherwise,
the attacker chooses another benign file of appropri-
ate size, and repeats the above step, until finally he
succeeds in constructing an adversarial example that
is sufficiently similar to a benign file.

5.2 Accuracy measurements

Now we study the robustness of SIMBIoTA and
SIMBIoTA-ML against the above described strategies
for creating adversarial examples. We measure ro-
bustness by creating adversarial examples using those
strategies and presenting them to SIMBIoTA and
SIMBIoTA-ML, already updated and trained, respec-
tively. We record the classification results (malware
or benign) for the presented adversarial examples and
compute the accuracy (i.e., the ratio between the num-
ber of correct detections and the total number of sam-
ples presented) of both SIMBIoTA and SIMBIoTA-
ML. Note that in this case, accuracy equals 1 minus
the misclassification rate of the algorithms. An accu-
racy close to 1 means that large part of the adversar-
ial examples presented are correctly detected as mal-
ware. When the accuracy is close to 0, the classifier is
misled by the adversarial examples, as most of them
are not detected as malware.

For the purpose of the robustness measurement,
we divided both the ARM and the MIPS samples in
the CUBE-MALIOT-2021 dataset into three groups
depending on the sample size. The first group con-
tains all samples with size smaller than 50 KB, the
second group contains all samples with size between
50 KB and 120 KB, and the third group contains all
samples with size larger than 120 KB. It turns out that
each of these groups contains roughly one third of the

total number of samples in both the ARM and the
MIPS cases. We call these groups of malware sam-
ples the set of small (S), medium (M), and large (L)
samples, respectively.

Then, for studying the robustness against strat-
egy Chunker, we randomly chose 4,000 samples from
each group and applied strategy Chunker on them
with target TLSH difference values 40 and 60. The
reason to also use the target TLSH difference of 60,
besides the difference threshold 40 used by SIM-
BIoTA, was that a larger target difference results in
an adversarial example that differs even more from
the original sample. Table 1 shows the number of re-
sulting adversarial examples in each case both for the
ARM and the MIPS samples.

ARM
Target TLSH diff S M L

40 3,933 3,655 3,630
60 3,814 3,440 3,357

MIPS
Target TLSH diff S M L

40 2,051 3,215 3,189
60 2,040 2,854 2,721

Table 1: Number of adversarial examples created with strat-
egy Chunker from the set of small (S), medium (M), and
large (L) samples, with target TLSH difference values 40
and 60, in the ARM and MIPS cases.

As for strategy Disguiser, we randomly chose 100
samples from each group of malware (small, medium,
large) and we also randomly chose 300 benign files
from the same dataset that was used for the perfor-
mance evaluation of SIMIBIoTA-ML in Section 4.
We combined each malware sample with each benign
file that satisfied the size constraint (i.e., the size of
the malware was at most 20% of that of the benign
file) using strategy Disguiser with target TLSH dif-
ference values 30 and 40. In this case, besides the
known TLSH difference threshold of 40, we used the
smaller target difference value of 30 too, because that
results in stronger similarity of the created adversarial
example to its hosting benign file. Table 2 shows the
number of adversarial examples obtained in this way
in each case both for the ARM and the MIPS samples.

In this robustness study, we did not use the weekly
analysis that we used in the performance evaluation
of SIMBIoTA and SIMBIoTA-ML. Instead, for SIM-
BIoTA, we simply took the dominating set calculated
on the last week, and for SIMBIoTA-ML, we took the
random forest model trained on the last week. In other
words, in both cases, we used a classifier constructed
or trained on the largest amount of data available to
the antivirus company from its intelligence network.



ARM
Target TLSH diff S M L

40 4,732 2,022 237
30 4,195 1,618 138

MIPS
Target TLSH diff S M L

40 10,025 3,630 1,877
30 9,265 3,240 1,630

Table 2: Number of adversarial examples created with strat-
egy Disguiser from the set of small (S), medium (M), and
large (L) samples, with target TLSH difference values 30
and 40, in the ARM and MIPS cases.

We presented the adversarial examples that we cre-
ated to these classifiers and measured their accuracy.
Similar to the performance evaluation, we repeated
the whole experiment 12 times, and we show the box
plot of the accuracy results obtained in the 12 runs in
Figures 10 and 11 for strategy Chunker and strategy
Disguiser, respectively.

As we can see in Figures 10, SIMBIoTA-ML is
more robust against strategy Chunker than SIMBIoTA
is, achieving much higher accuracies in all cases.
Moreover, this higher accuracy is actually close to
1 for medium and large size samples, while we can
observe a much lower accuracy (but still higher than
SIMBIoTA’s) for small samples. What is surpris-
ing, though, is that the accuracy of SIMBIoTA-ML
does not decrease significantly even when the TLSH
difference between the adversarial examples and the
original malware samples is at least 60, while in
case of SIMBIoTA, accuracy drops significantly in
those cases. The reason is that SIMBIoTA directly
compares the TLSH values of the adversarial exam-
ples to the TLSH values in its dominating set, and it
uses the TLSH difference threshold of 40 for detec-
tion. Clearly, the larger the TLSH difference between
the adversarial examples and known malware is, the
harder it is for SIMBIoTA to successfully detect them
as malware.

Unfortunately, the robustness of SIMBIoTA-ML
is not preserved at all against strategy Disguiser: as
shown in Figure 11, both SIMBIoTA and SIMBIoTA-
ML achieve very poor accuracy on the adversarial ex-
amples constructed with this strategy. Finally, there
does not seem to be any significant difference in the
results in the ARM and the MIPS cases.

6 CONCLUSION

In this paper, which is an extended version of (Papp
et al., 2022), we proposed SIMBIoTA-ML, a light-
weight, machine learning-based malware detection

approach for embedded IoT devices. Our work was
inspired by SIMBIoTA (Tamás et al., 2021), which
uses TLSH hashes to detect malware based on bi-
nary similarity of new files to known malicious bi-
naries. The key difference between SIMBIoTA-ML
and SIMBIoTA is that we use TLSH hashes as feature
vectors to train a random forest classifier, instead of
directly measuring the TLSH similarity of files, and
by doing so, we achieve a better malware detection
performance than that of SIMBIoTA.

More specifically, we showed via an extensive
experiment on a large dataset of real IoT malware
and benign files that SIMBIoTA-ML consistently
achieves a higher true positive detection rate than
SIMBIoTA does, while, at the same time, it also has
a higher, but still acceptable, false positive detection
rate. In terms of storage requirements, SIMBIoTA is
superior to SIMBIoTA-ML, but SIMBIoTA-ML can
still be hosted by mid-range and high-end embedded
devices with megabytes of memory. Finally, we also
showed that the run time delay SIMBIoTA introduces
into the operation of an embedded IoT device is not
constant, making it hard to design for. In contrast,
SIMBIoTA-ML introduces a near-constant, although
somewhat increased, delay into the operation of the
embedded IoT device, which is advantageous when
the device has to satisfy real-time constraints.

We also studied the robustness of SIMBIoTA-ML
and SIMBIoTA to two adversarial strategies aiming
at the creation of malware samples that are likely
misclassified by our similarity-based malware detec-
tors. We found that SIMBIoTA-ML is robust against
one of the strategies, but it can be easily misled by
the other, whereas SIMBIoTA achieves poor robust-
ness against both adversarial strategies. This means
that, while SIMBIoTA-ML is more robust than SIM-
BIoTA is, there is still much room for improvement
of SIMBIoTA-ML too.

Our results also demonstrate that achieving ro-
bustness against adversarial examples is a challenging
problem. Solving this open issue requires further ef-
fort from the research community. In our future work,
we plan to improve the robustness of SIMBIoTA-
ML against adversarial examples by splitting samples
into smaller parts both at the training and the testing
phases, and by performing detection on smaller parts
of a new file. We hope that, in this way, SIMBIoTA-
ML will eventually be able to detect if any part of
a new file is similar to a known malware. Such an
improved detection algorithm would achieve better
robustness not only against strategy Disguiser, but
against any strategy that hides a known malware bi-
nary in a benign file or adds extra bytes to a known
malware binary.



Figure 10: Comparison of the robustness of SIMBIoTA (left) and SIMBIoTA-ML (right) against adversarial examples gener-
ated with strategy Chunker for ARM (top) and MIPS (bottom) samples. The different cases that were analyzed are denoted
by a combination of letters S, M, L (indicating the size of the malware samples from which the adversarial examples were
created) and numbers 40, 60 (indicating the target TLSH difference used by the strategies). These cases are shown on the
x-axis, while the y-axis shows the accuracy values.

Figure 11: Comparison of the robustness of SIMBIoTA (left) and SIMBIoTA-ML (right) against adversarial examples gener-
ated with strategy Disguiser for ARM (top) and MIPS (bottom) samples. The different cases that were analyzed are denoted
by a combination of letters S, M, L (indicating the size of the malware samples from which the adversarial examples were
created) and numbers 30, 40 (indicating the target TLSH difference used by the strategies). These cases are shown on the
x-axis, while the y-axis shows the accuracy values.
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